COINCIDENCE FOR SUBSTITUTIONS OF PISOT TYPE by Marcy Barge &
نویسندگان
چکیده
— Let φ be a substitution of Pisot type on the alphabet A = {1, 2, . . . , d}; φ satisfies the strong coincidence condition if for every i, j ∈ A, there are integers k, n such that φn(i) and φn(j) have the same k-th letter, and the prefixes of length k − 1 of φn(i) and φn(j) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 and provide a partial result for d ≥ 2. Résumé (Cöıncidence pour les substitutions de type Pisot). — Soit φ une substitution de type Pisot sur un alphabet A = {1, 2, . . . , d} ; on dit que φ satisfait la condition de cöıncidence forte si pour tout i, j ∈ A, il existe des entiers k, n tels que φn(i) et φn(j) aient la même k-ième lettre et les préfixes de longueur k − 1 de φn(i) et φn(j) aient la même image par l’application d’abélianisation. Nous montrons que la condition de cöıncidence forte est satisfaite pour d = 2 et nous donnons un résultat partiel pour d ≥ 2. A substitution φ on a finite alphabet A = {1, 2, . . . , d} satisfies the strong coincidence condition if for every i, j ∈ A, there are integers k, n such that (i) φ(i) and φ(j) have the same k-th letter and Texte reçu le 21 novembre 2001, accepté le 14 mai 2002 Marcy Barge, Department of Mathematics, Montana State University, Bozeman MT 59717 (USA) • E-mail : [email protected] Beverly Diamond, Department of Mathematics, College of Charleston, Charleston SC 29424 (USA) • E-mail : [email protected] 2000 Mathematics Subject Classification. — 37B10.
منابع مشابه
Coincidence for Substitutions of Pisot Type
— Let φ be a substitution of Pisot type on the alphabet A = {1, 2, . . . , d}; φ satisfies the strong coincidence condition if for every i, j ∈ A, there are integers k, n such that φn(i) and φn(j) have the same k-th letter, and the prefixes of length k − 1 of φn(i) and φn(j) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 an...
متن کاملHomological Pisot Substitutions and Exact Regularity
We consider one-dimensional substitution tiling spaces where the dilatation (stretching factor) is a degree d Pisot number, and the first rational Čech cohomology is d-dimensional. We construct examples of such “homological Pisot” substitutions whose tiling flows do not have pure discrete spectra. These examples are not unimodular, and we conjecture that the coincidence rank must always divide ...
متن کاملGeometric Models of Pisot Substitutions and Non-commutative Arithmetic
Unimodular Substitutions on 2 letters. Conjecture: the dynamical system associated with a primitive substitution on 2 letters, with matrix in SL(2,Z), is measurably isomorphic to a circle rotation. There is a very convenient criterium, due to B.Host: Definition: the substitution σ has strong coincidence if there exists n and k such that σ(0) and σ(1) have same letter of index k, and the 2 prefi...
متن کاملMini-Workshop: The Pisot Conjecture - From Substitution Dynamical Systems to Rauzy Fractals and Meyer Sets
This mini-workshop brought together researchers with diverse backgrounds and a common interest in facets of the Pisot conjecture, which relates certain properties of a substitution to dynamical properties of the associated subshift. Mathematics Subject Classification (2000): 37B10, 28A80, 37B50, 52C23. Introduction by the Organisers A substitution is a non-erasing morphism of the free monoid. S...
متن کاملProximality in Pisot Tiling Spaces
A substitution φ is strong Pisot if its abelianization matrix is non-singular and all eigenvalues except the Perron-Frobenius eigenvalue have modulus less than one. For strong Pisot φ that satisfies a no cycle condition and for which the translation flow on the tiling space Tφ has pure discrete spectrum, we describe the collection T P φ of pairs of proximal tilings in Tφ in a natural way as a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002